Load the data from Table 1 in Section 4.1 into R.
Table1 <- read.csv("https://sullystats.github.io/Statistics6e/Data/Chapter4/Table1.csv")
head(Table1,n=4)
## Speed Distance
## 1 100 257
## 2 102 264
## 3 103 274
## 4 101 266
Rather than reading the data from Github, we could manually enter the data into R.
Table1a=data.frame("Speed"=c(100, 102, 103, 101, 105, 100, 99, 105), "Distance"=c(257, 264, 274, 266, 277, 263, 258, 275))
golf_model <- lm(Distance ~ Speed,data=Table1) # Name and find regression model.
summary(golf_model) # Use the *summary* command
##
## Call:
## lm(formula = Distance ~ Speed, data = Table1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8136 -2.0195 0.3542 2.0619 3.6881
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -55.7966 48.3713 -1.154 0.29257
## Speed 3.1661 0.4747 6.670 0.00055 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.883 on 6 degrees of freedom
## Multiple R-squared: 0.8811, Adjusted R-squared: 0.8613
## F-statistic: 44.48 on 1 and 6 DF, p-value: 0.0005498
There is quite a bit of information in the summary. The coefficient of determination, \(R^2\), is 0.881 (the second from last line of output following Multiple R-squared:).
library(mosaic)
golf_model <- lm(Distance ~ Speed,data=Table1) # Name and find regression model.
rsquared(golf_model) # Determine R-squared
## [1] 0.8811499
The coefficient of determination, \(R^2\), is 0.881.