If necessary, install the Mosaic package.
install.packages("mosaic")
Let’s construct a confidence interval for the population mean miles per gallon of a 2014 Toyota Camry. This follows Example 4 in Section 9.2. First, let’s enter the data in Table 3.
mpg <- c(25.9, 26.2, 32.5, 32.0, 27.2, 30.0, 25.5, 26.4, 27.4, 27.4, 27.0, 28.0, 31.2, 25.1, 30.6, 27.2)
Table3 <- data.frame("mpg"=mpg) #Create a data frame and name column "mpg"
head(Table3,n=4)
## mpg
## 1 25.9
## 2 26.2
## 3 32.5
## 4 32.0
Now, let’s determine a single bootstrap mean.
library(mosaic)
mean(~mpg,data=resample(Table3))
## [1] 27.96875
Let’s determine another bootstrap mean.
library(mosaic)
mean(~mpg,data=resample(Table3))
## [1] 27.71875
Now, let’s find 2000 resamples and display the first four bootstrap means.
bootstrap <- do(2000)*mean(~mpg,data=resample(Table3)) #Find 2000 bootstrap means
head(bootstrap,n=4)
## mean
## 1 26.9250
## 2 28.4375
## 3 27.6500
## 4 27.8500
Now, we find the 2.5th and 97.5th percentiles to find the lower and upper bound for a 95% confidence interval.
qdata(~mean,c(0.025,0.975),data=bootstrap)
## 2.5% 97.5%
## 26.98734 29.28766
Now, let’s compare the result above to that obtained using Student’s t-distribution.
library(mosaic)
confint(t.test(~mpg,data=Table3,conf.level=0.95))
## mean of x lower upper level
## 1 28.1 26.83183 29.36817 0.95
We are 95% confident the mean miles per gallon of a 2014 Toyota Camry is between 26.83 and 29.37.