We are going to work with the data in Table 1 from Section 11.2.
First, install the Mosaic package, if necessary.
install.packages("mosaic")
Read the data from Table 1 into R.
Table1 <- read.csv("https://sullystats.github.io/Statistics6e/Data/Chapter11/Table1.csv")
head(Table1,n=3)
## Dominant Nondominant
## 1 0.177 0.179
## 2 0.210 0.202
## 3 0.186 0.208
We are going to follow Example 1 from Section 11.1. In this problem, we want to know if reaction time in a student’s dominant hand is less than the reaction time in the same student’s nondominant hand. This is matched-pairs data. If we compute the difference in the data as “Dominant - Nondominant”, then we would expect this difference to be negative (assuming reaction time in the dominant hand is lower). Therefore, we are testing
\(H_0:\mu_d = 0\)
\(H_1:\mu_d < 0\)
The syntax for the test is
t.test(~(x - y),data=data frame,mu=0,alternative = less or greater or two.sided)
library(mosaic)
t.test(~(Dominant-Nondominant),data=Table1,mu=0,alternative="less")
##
## One Sample t-test
##
## data: (Dominant - Nondominant)
## t = -2.7759, df = 11, p-value = 0.009017
## alternative hypothesis: true mean is less than 0
## 95 percent confidence interval:
## -Inf -0.004648515
## sample estimates:
## mean of x
## -0.01316667
The test statistic is \(t_0 = -2.7759\). The P-value for the test is 0.009.
Use the confint command with the t.test command in the Mosaic library. Adjust the level of confidence as desired.
confint(t.test(~(Dominant-Nondominant),data=Table1),conf.level=0.95)
## mean of x lower upper level
## 1 -0.01316667 -0.02360627 -0.002727063 0.95
The lower bound of the confidence interval is -0.024 and the upper bound is -0.003.
Note Try computing the interval as “Nondominant - Dominant”. What do you notice?
To get any descriptive statistics for matched-pairs data, first use the transform command to obtain the differences and store the result in a new data frame. Call the new variable differences.
Table1_diff <- transform(Table1,difference=Dominant-Nondominant)
head(Table1_diff)
## Dominant Nondominant difference
## 1 0.177 0.179 -0.002
## 2 0.210 0.202 0.008
## 3 0.186 0.208 -0.022
## 4 0.189 0.184 0.005
## 5 0.198 0.215 -0.017
## 6 0.194 0.193 0.001
favstats(~difference,data=Table1_diff)
## min Q1 median Q3 max mean sd n missing
## -0.043 -0.02275 -0.0145 0.0015 0.008 -0.01316667 0.01643075 12 0
bwplot(~difference,data=Table1_diff,horizontal=TRUE,main="Difference in Reaction Time",fill="#6897bb")